Potential for fisheries-induced evolution in the Laurentian Great Lakes

Abstract

Fisheries are selective, capturing fish based on their body size, behaviour, life stage, or location. Over time, if harvest pressure is strong enough and variation in traits heritable, evolution can occur that affects key aspects of the ecology of fish stocks. Most compelling examples of rapid evolution in response to harvest have come from marine systems. Here, we review the state of knowledge on fisheries-induced evolution (FIE) in the Laurentian Great Lakes where subsistence, commercial, and recreational fisheries have operated for centuries. We conclude that stocks experienced harvest rates high enough and for long enough to undergo evolution. While historical fisheries exploited more juveniles, some contemporary Great Lakes fisheries target primarily adult size-classes thus reducing current selection for earlier maturation; however, other traits and behaviours could evolve (e.g., growth, timing of spawning, boldness). While commercial harvest previously dominated, recreational fishing is now expected to be a strong contributor to harvest selection in the Great Lakes. Environmental variation, density-dependence, invasive species, and the genetic legacy of population bottlenecks and stocking interact with, and make it more challenging to detect, FIE in the Great Lakes than in marine systems. Case studies are presented for Great Lakes stocks of yellow perch Perca flavescens and lake whitefish Coregonus clupeaformis for which FIE has been investigated. The evidence for FIE in the Great Lakes is currently sparse, potentially because of the low research focus on this topic or because of the interacting influence of environmental variation and anthropogenic stressors.

Publication
Journal of Great Lakes Research